Corrections to the 4th Edition of the \textit{Canadian Foundation Engineering Manual} are noted below. These corrections apply to the 4th Edition, 1st printing (2006), 2nd printing (2008) and 3rd printing (2012). No corrections have been made to this printing – please transfer these corrections to your copy.

For these corrections and any future corrections, please refer to the Canadian Geotechnical Society (CGS) website at \texttt{www.cgs.ca}.

Page 17, Section 3.1.3.2 Atterberg Limits

ASTM standards D423 and D424 have been withdrawn and replaced with standard D4318.

Page 18, Section 3.1.3.4

Classes of sensitivity may be defined as follows:

- low sensitivity \(S_t < 2 \)
- medium sensitivity \(2 < S_t < 4 \)
- sensitive \(4 < S_t < 8 \)
- extra- sensitive \(8 < S_t < 16 \)
- quick clay \(S_t > 16 \)

Page 27, Section 3.2.4.1 Jointed Rockmass Strength and Deformability

should read: Section 3.2.4.6 Jointed Rockmass Strength and Deformability

The second bullet at the foot of page 27

- A constant, \(m_i \), that defines the frictional characteristics of the component minerals within each intact rock element

should read:

- A constant, \(m_i \), that defines the frictional resistance of the component minerals within each intact rock element

Page 28, Section 3.2.4.2 Rockmass Classification

should read: Section 3.2.4.7 Rockmass Classification
Page 106, Section 6.6.3.2(3)

Equation (6.21) should read:

\[q_{c1} = q_c \left(\frac{96}{\sigma'_v} \right)^{0.5} \quad \text{or} \quad q_{c1} = q_c \frac{1.8}{0.8 + \sigma'_v / 96} \]

(6.21)

where \(q_{c1} \) = normalized tip resistance to 100kPa
\(q_c \) = measured tip resistance (kPa) and
\(\sigma'_v \) = initial effective overburden pressure in (kPa)

Page 113, Section 6.7.1.1

Active Earth Pressure Condition M-O Method

where
\(\phi \) = soil angle of internal friction, \(\theta \) = slope of backfill with horizontal, \(\beta \) = slope of the back face of the retaining wall with vertical, \(\delta \) = angle of friction of wall-backfill interface

Change to read

where
\(\phi \) = soil angle of internal friction, \(\beta \) = slope of backfill with horizontal, \(\theta \) = slope of the back face of the retaining wall with vertical, \(\delta \) = angle of friction of wall-backfill interface

Page 130, Section 7.7.1.

Notes: Line 3

For a strip footing on cohesive soil

should read

For a square footing on cohesive soil

Line 8

When using the above expressions, care must be taken to ensure that the units are consistent. These equations were initially derived for \(b \) units in feet. Therefore, when using \(b \) in meters, the expression \((b+1)\) needs to become \((b+0.3)\) and \((m+0.5)\) becomes \((m+0.15)\)

Should be replaced by:

When using the above expressions, care must be taken to ensure that the units are consistent. These equations were initially developed for Imperial units where \(b \) is in units of feet. Therefore, when using foundation width units of \(b \) in metres and subgrade reaction modulus in MPa/m, \(b \) in the above expressions becomes 3.28 \(b \).
Page 151, Section 10.2.2

See paragraph 1, 1st sentence, which reads:
“The values of c and φ for use - - ”, change to read as “The values of c and φ for use - - ”

See paragraph 1, 5th sentence, which reads:
“- - c’ and φ’ equal to the - - ” change to read as “- - c’ and φ equal to the - - ”

Page 151, Section 10.2.3

(a) See paragraph 2, 3rd sentence;

“- - and Brooker (1971). An approximate value of Nγ suitable for φ’ > 10° obtained - - ” change to read
“- - and Brooker (1971). An approximate value of Nγ suitable for φ > 10° obtained - - ”:

(b) Equation (10.5) should read:

\[N_γ \equiv 0.1054e^{0.1675φ} \]

(10.5)

Page 152, Section 10.2.3

See paragraph 1, 1st sentence, which reads:

“For the case of undrained stability (c = su, φ’ = 0) the bearing capacity - - ” change to read:
“For the case of undrained stability (c = su, φ = 0) the bearing capacity - - ”

Page 183, Section 12.3.3, Line 18

"defines a ratio H/F that is deemed indicative of potential instability when H/F > 1. "

Change to read

"defines a ratio H/F that is deemed indicative of potential instability when H/F < 1. "

Page 192, Section 13.4.2

Figure caption should read:

FIGURE 13.5 Mean freezing index in degree days (°C) for Canada (after Boyd, 1973).
Page 194, Section 13.4.2, Line 16

Replace $\mu = \frac{CI_s}{Lt}$ with $\mu = \frac{CI_s}{L_s t}$

Page 266, Section 18.2.1.3, 2nd paragraph

Furthermore, it is important to install the toe of the pile... (toe instead of top).

Page 271, Section 18.2.3.2

Table 18.4 Friction Coefficient, α

Table column header "Maximum Limit of q_c (MPa)"

should read:

Table column header "Maximum Limit of q_s (MPa)"

Page 272, Section 18.2.3.3

Equation (18.16) should read:

$$ (Q_v)_{ult} = mNA_t + n\bar{N}A_s $$

where

$$(Q_v)_{ult} = \text{ultimate axial capacity of single pile in granular soils (kN)}$$

m = an empirical coefficient equal to 400 for driven piles and to 120 for bored piles
N_t = SPT index at the pile toe
A_t = pile toe area (m^2)
n = an empirical coefficient equal to two for driven piles and to one for bored piles
\bar{N} = average SPT index along the pile
A_s = pile embedded shaft area (m^2)

where \bar{N} is average corrected SPT value = $C_N N$, in which

$$ C_N = 0.77 \log_{10} \frac{2000}{\sigma_v} \quad \sigma_v \geq 25 kPa \quad \sigma' \quad \text{in kPa} $$
Page 279, Section 18.2.7.9 Penetration Resistance

The penetration per blow (the set) decreases rapidly after a resistance of 5mm/blow for shaft-bearing piles and 3mm/blow for toe-bearing piles. There is little justification in requiring sets smaller than 3mm/blow for a end-bearing pile that may only be warranted if driving is easy in the soil above the bearing stratum, or under special circumstances.

Replace with

The penetration per blow (the set) decreases rapidly after a resistance of 5mm/blow for shaft-bearing piles and 3mm/blow for friction piles. There is little justification in requiring sets smaller than 3mm/blow for friction piles. A final set of 2mm/blow for the toe bearing piles may be only be warranted if driving is easy in the soil above the bearing stratum, or under special circumstances.

Page 280, Section 18.3.1.1

Equation 18.24 should read
\[S_{Si} = C_t \frac{Q_{ia}}{dq_t} \]

Equation 18.25 should read
\[C_s = \left(0.93 + 0.16 \left(\frac{L}{d} \right)^{0.5} \right) C_t \]

Page 298, Section 18.6.5

Design for Combined Toe and Shaft Resistance

Equation 18.45 should read
\[q_s = \frac{(1 - n)Q}{\pi L_s b_s} \]

Page 387, Section 24.9

Equation 24.10 should read
\[K_{ae} = \frac{\cos(\delta + i) \cos^2(\phi - \varphi - i)}{\cos^2 i \cos \varphi \cos(\delta + i + \varphi) \left| 1 + X_a^{1/2} \right|^2} \]

Equation 24.11 should read
\[X_a = \frac{\sin(\delta + \phi) \sin(\phi - \varphi - \beta)}{\cos(\delta + i + \varphi) \cos(\beta - i)} \]
Page 388 Section 24.11

Figure 24.10 Note changes in scale on vertical axes (multiplied by a factor of 3)

Circled numbers indicate the following soil types:

1. Clean sand and gravel: GW, GP, SW, SP.
5. Medium to stiff clay deposited in chunks and protected from infiltration: CL, CH.

For Type 5 material, H is reduced by 1.2 m; resultant acts at a height of (H-1.2)/3 above base.
Figure 24.11 Note changes in scale on vertical axes (multiplied by a factor of 3) Add the footnote shown below Figure 24.11, but replace reference to Figure 29.2 with Figure 24.10.

For Type 5 material, H is reduced by 1.2 m; resultant acts at a height of $(H - 1.2)/3$ above base.

For description of soil type, see Figure 29.2.
Page 399, 22.12.4.5 Overall Stability

Should read: 24.12.4.5 Overall Stability

Page 399, Table 26.1

The schematic figures (only) in the System column for tangent piles (row 6) and secant piles (row 7) should be reversed.

Page 457, Missing reference